Machine Learning-driven Multiscale Modeling, a next generation simulation infrastructure showcased on a RAS-RAF Biology application

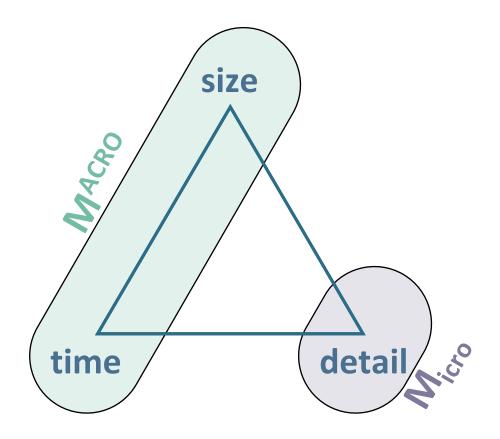
September 3rd, 2021

Helgi I. Ingólfsson, Biochemical and Biophysical Systems, PLS, LLNL

On behalf of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C)
Pilot 2 team (LLNL, LANL, ORNL, ANL, FNLCR and IBM)

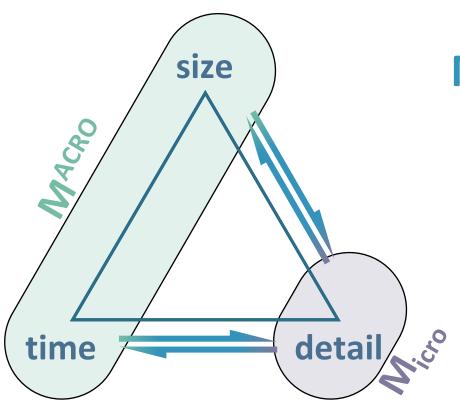
Biomolecular simulations require size, time, and detail

- Large system
- Long simulation time
- Highly detailed



Biomolecular simulations require size, time, and detail

- Large system
- Long simulation time
- Highly detailed



MuMMI

Mulitscale

Machine-learned

Modeling

Infrastructure

Joint design of advanced computing solutions for cancer research (JDACS4C) - Pilot 2 Team

Argonne National Laboratory: Arvind Ramanathan

Oak Ridge National Lab: Debsindhu Bhowmik, Chris Stanley

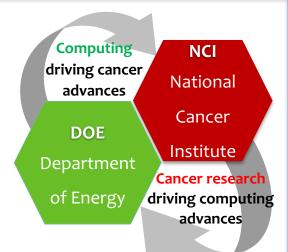
Lawrence Livermore National Lab: Fikret Aydin, Harsh Bhatia, Timo Bremer, Tim Carpenter, Joseph Chavez, Gautham Dharuman, Brian Van Essen, Jim Glosli, Helgi Ingólfsson, Sam Jacobs, Felice Lightstone, Adam Moody, Joseph Moon, Francesco Di Natale, Tomas Oppelstrup, <u>Fred Streitz</u>, Jayram Thathachar, Xiaohua Zhang

NCI's Frederick National Laboratory for Cancer Research: Debanjan Goswami, Gulci Gulten, <u>Dwight Nissley</u>, Rebika Shrestha, Andy Stephen, Tommy Turbyville, Que Van

Los Alamos National Lab: Nick Hengartner, Christoph Jungans, Cesar Lopez, Chris Neale, Kien Nguyen, Sandrasegaram Gnanakaran, Sumantra Sarkar

In collaboration with:

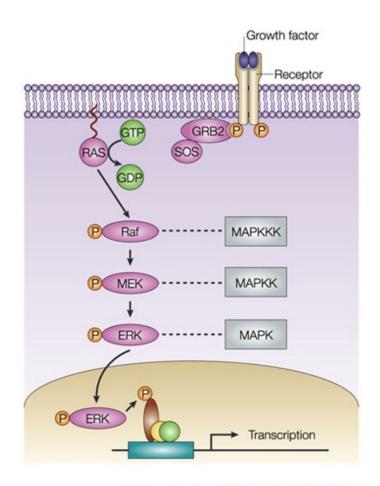
IBM: Bruce D'Amora, Changhoan Kim, Claudia Misale, Lars Schneidenbach, Sara Schumacher



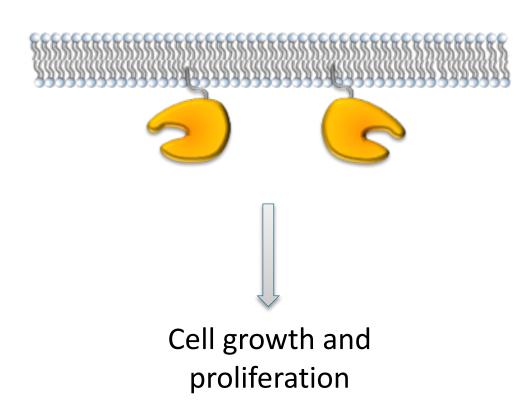
The RAS protein is a critical, 'undruggable' cancer target

93% of all pancreatic42% of all colorectal33% of all lung cancers

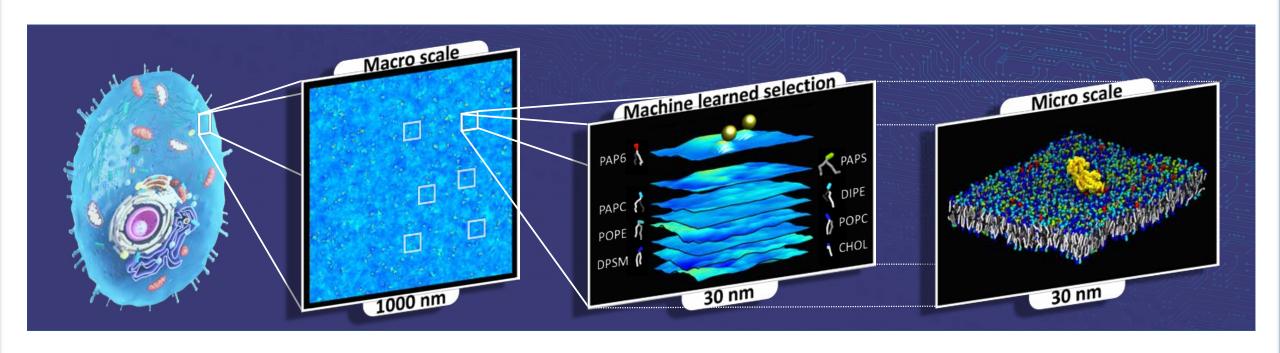
1 million deaths/year world-wide



Nature Reviews | Molecular Cell Biology



MuMMI is built on machine learning, automated workflow, and on-the-fly analysis and feedback



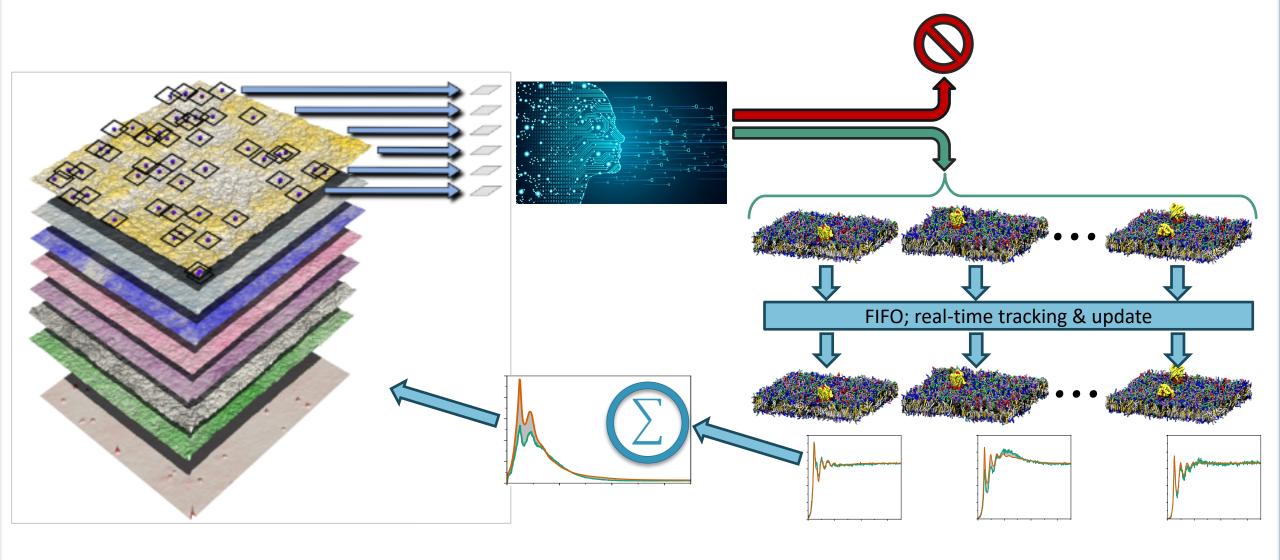
M^{ACRO} scale simulation

- DDFT coupled with MD
- 1 μm²
- 300 RAS
- 100's μs

M_{icro} scale simulations

- Martini CG simulation
- 30 x 30 nm²
- >1 μs each
- Thousands of unique simulations

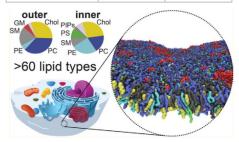
Grand challenge problems demand a complex workflow



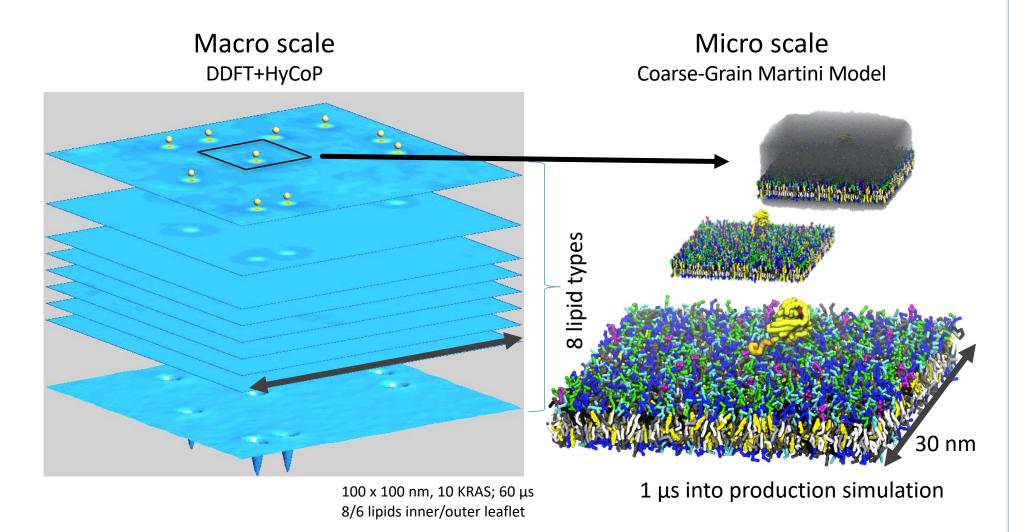
Macro to micro scale coupling

8 lipid type plasma membrane model

	outer	inner
POPC	0.242	0.140
PAPC	0.121	0.075
POPE	0.020	0.054
DIPE	0.061	0.161
DPSM	0.242	0.108
PAPS	0.000	0.161
PAP6	0.000	0.022
CHOL	0.313	0.280

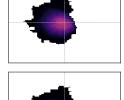


Ingólfsson et al. 2014. Lipid Organization of the Plasma Membrane. *JACS* 136:14554; Ingólfsson et al. 2020. Capturing Biologically Complex Tissue-Specific Membranes at Different Levels of Compositional Complexity." *J Phys Chem B* 124:7819.



ML sampling provides a wider coverage of the phase space of

RAS neighborhoods **Latent Space** Completeness of statistics In-situ Analysis Macro model update via live feedback All Random ML

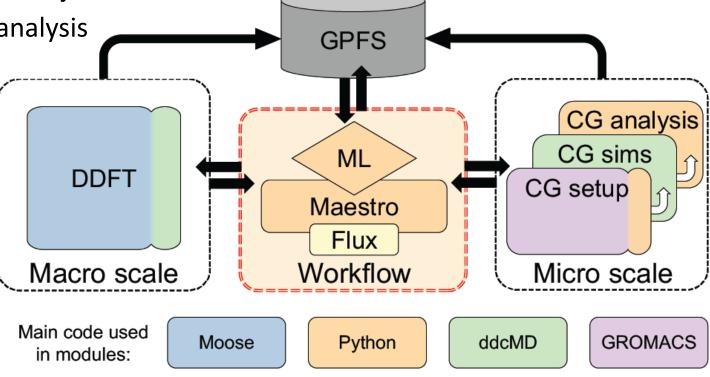


Automated workflow is the fundamental foundation of MuMMI

- Controls and runs the macro model
- Monitors the ML list of patches
- Sets up, launches, and runs ~10⁵ micro jobs

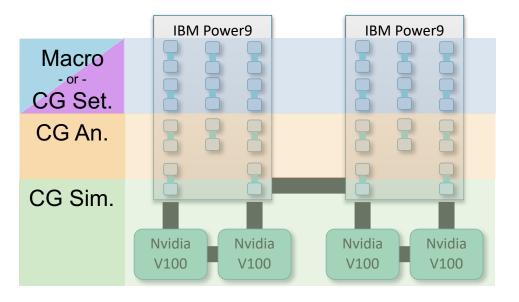
Carries, stores, and amalgamates analysis

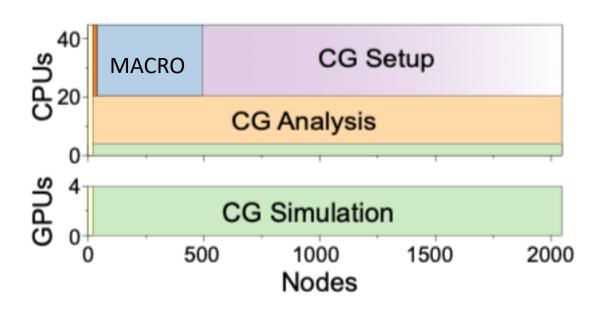
Updates macro model



Automated workflow enables us to optimally utilize the hybrid CPU/GPU architecture

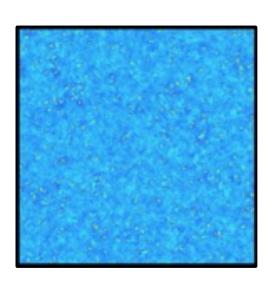
Sierra, the world's 3rd fastest supercomputer





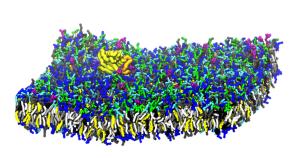
- Fully use of all GPUs/GPUs on each node
- Typical run using half of Sierra, 2040 nodes
- Scaled to full *Sierra*, 4000 nodes

A simulation campaign of unprecedented size and scope run on *Sierra*, the world's 3rd fastest supercomputer



Macro simulation:

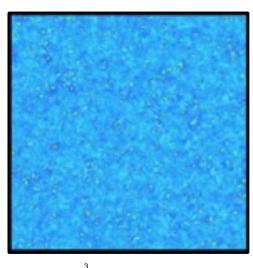
- 1 μm²
- 300 KRAS
- 150 μs
- 2M patches



Micro simulations:

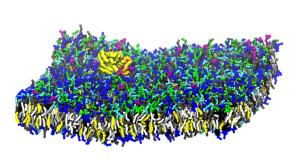
- 30 x 30 nm²
- 119,686 unique simulations
- 1+ μs each
- 206 ms aggregated
- >300M analyzed frames

A simulation campaign of unprecedented size and scope run on *Sierra*, the world's 3rd fastest supercomputer



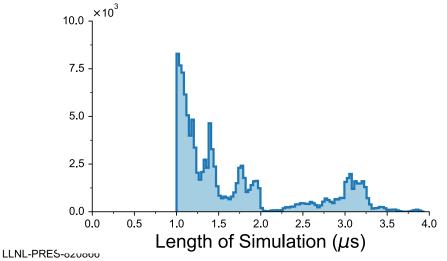
Macro simulation:

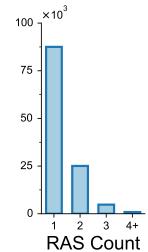
- 1 μm²
- 300 KRAS
- 150 μs
- 2M patches

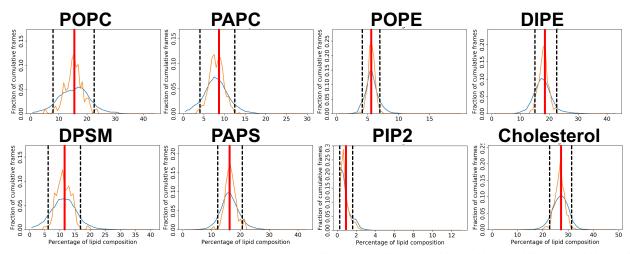


Micro simulations:

- 30 x 30 nm²
- 119,686 unique simulations
- 1+ μs each
- 206 ms aggregated
- >300M analyzed frames

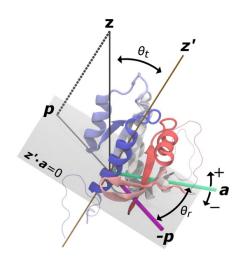


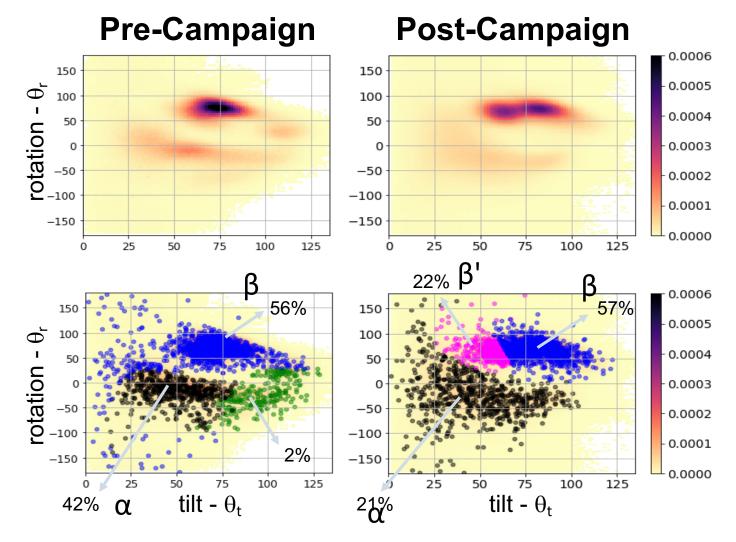




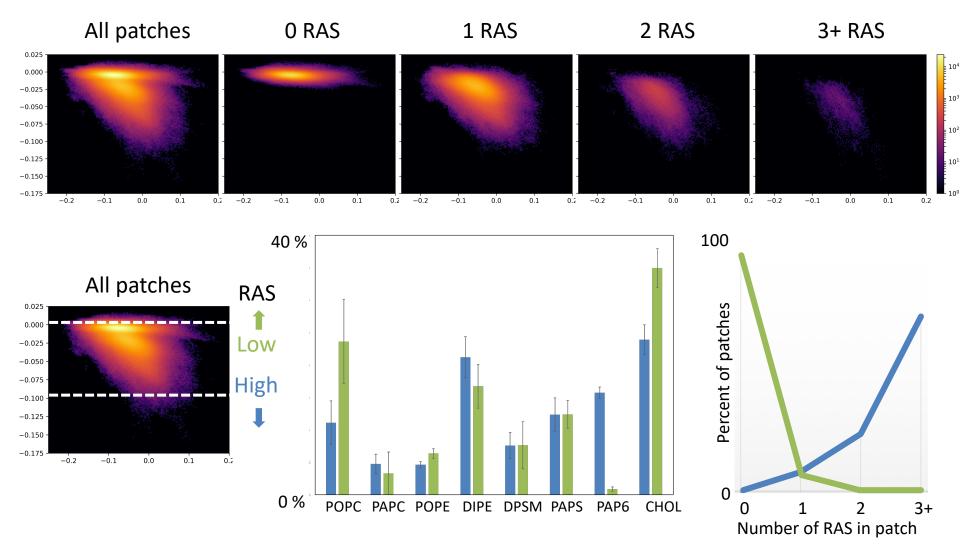
Detailed analysis revealed 3rd Markov state

RAS monomer RAS aggregate

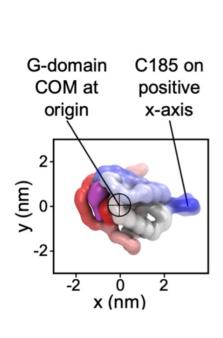


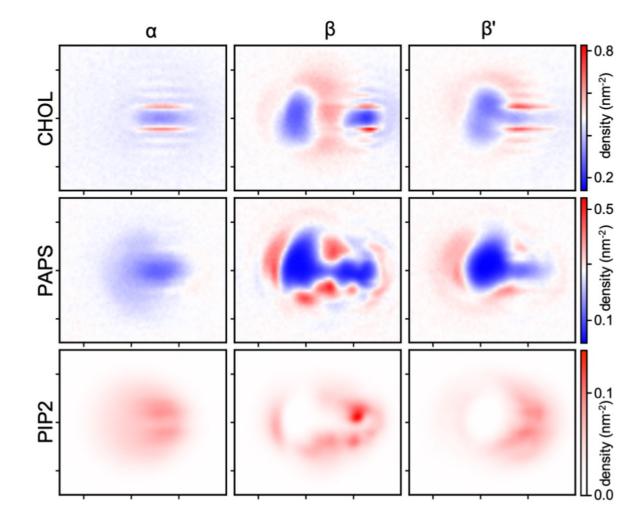


RAS assemblies have a preferential local membrane environment

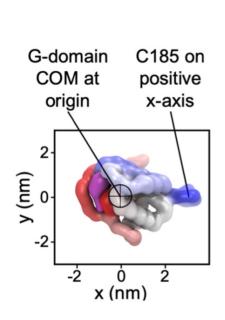


RAS lipid fingerprints

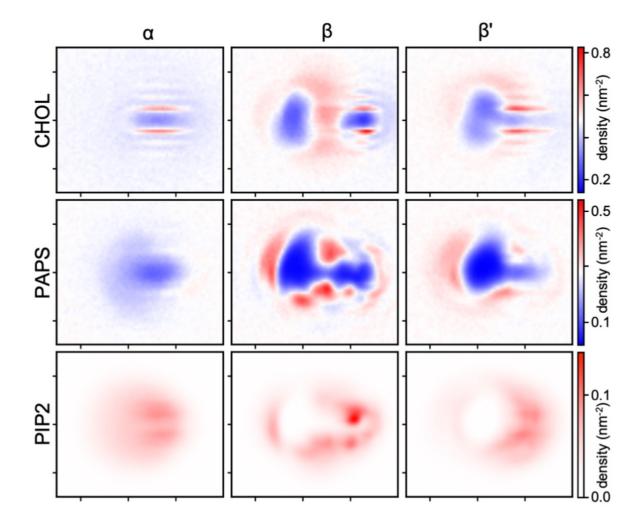




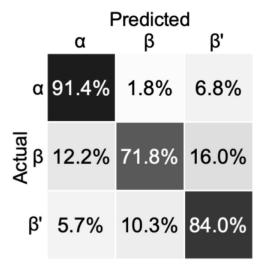
RAS lipid fingerprints



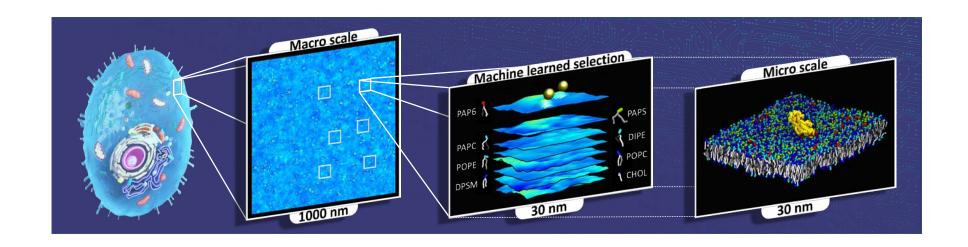
LLNL-PRES-820866

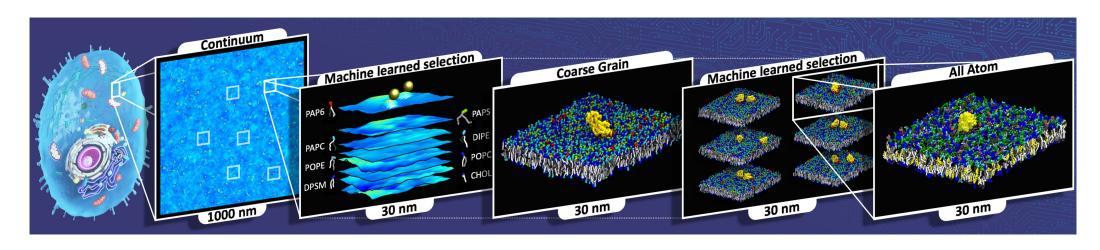


Trained convolutional neural network models on one RAS lipid density data



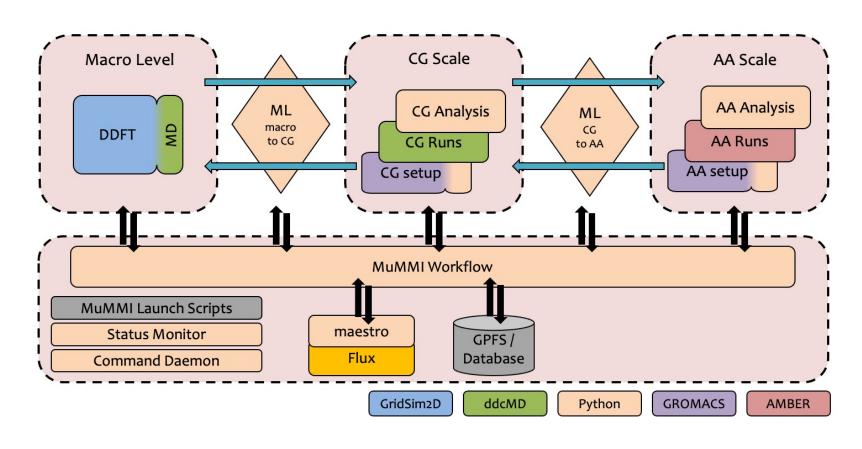
Three scale MuMMI, adding AA and another protein (RAF)



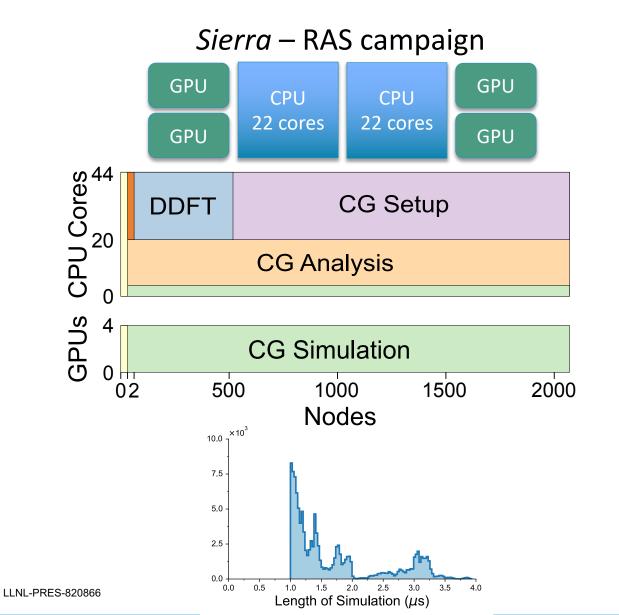


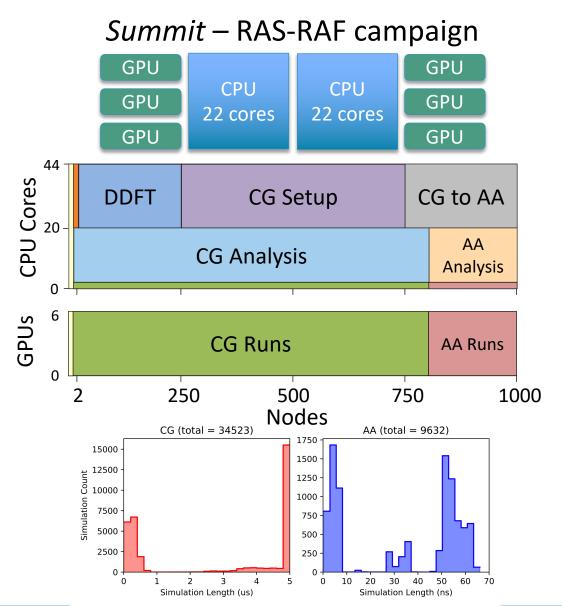
MuMMI improvements

- Support for RAF
- Third AA scale
 - Backmapp CG to AA
 - Run AA
 - Online analysis of AA
 - AA to CG feedback
 - CG to AA selection
- New macro model code
- Extended and update workflow
- Updated ML macro to CG
- Updated macro to CG setup



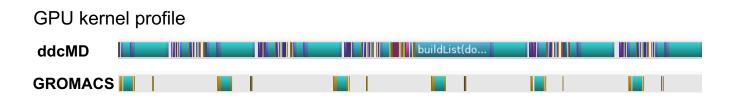
MuMMI operating on three length/time scales

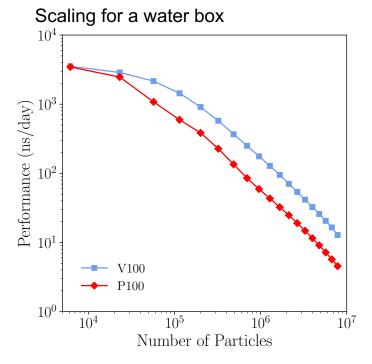




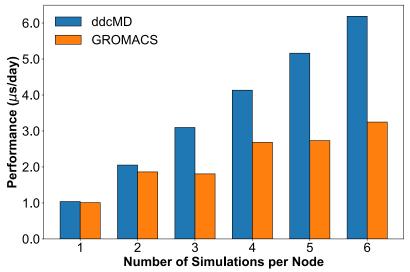
ddcMD-Martini

- ddcMD is an MD simulation code developed at Lawrence Livermore National Laboratory
- Added support for Martini
- Ported entire integration step to GPU
- Is open source, but is a MD engine only and has rough edges outside its current use cases





~140K lipid bilayer with RAS



A Multiscale Machine-learned Modeling Infrastructure (MuMMI)

- A large team effort acknowledgements to the full JDACS4C Pilot 2 team and IBM
- The different components have or are being open sourced:
 - ddcMD-Martini github.com/LLNL/ddcMD
 - ddcMDconverter github.com/LLNL/ddcMDconverter
 - Dynlm github.com/LLNL/dynim
 - Maestro github.com/LLNL/maestrowf
 - Flux github.com/flux-framework
 - MuMMI-core and PyTarldx in release process
 - MuMMI-RAS and the Macro model in preparation

This work has been supported in part by the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) program established by the U.S. Department of Energy (DOE) and the National Cancer Institute (NCI) of the National Institutes of Health. We thank the Livermore Institutional Grand Challenge and LANL Institutional computing for the computing time. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Los Alamos National Laboratory under Contract DE-AC5206NA25396, Oak Ridge National Laboratory under Contract DE-AC05-00OR22725, and Frederick National Laboratory for Cancer Research under Contract HHSN261200800001E.