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The RAS protein is a critical, ‘undruggable’ cancer target 

Cell growth and 
proliferation

93% of all pancreatic

42% of all colorectal

33% of all lung 
cancers

1 million deaths/year 
world-wide
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MUMMI is built on machine learning, automated workflow, 
and on-the-fly analysis and feedback

• Martini CG simulation
• 30 x 30 nm2

• >1 µs each
• Thousands of unique simulations

• DDFT coupled with MD
• 1 µm2

• 300 RAS
• 100’s µs

MACRO scale simulation Micro scale simulations
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Grand challenge problems demand a complex workflow

…
FIFO; real-time tracking & update

…
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Macro to micro scale coupling
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Total density
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1 µs into production simulation
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Continuum phase field model

100 x 100 nm, 10 KRAS; 60 µs 
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Macro scale
DDFT+HyCoP

outer inner 
POPC 0.242 0.140
PAPC 0.121 0.075
POPE 0.020 0.054
DIPE 0.061 0.161
DPSM 0.242 0.108
PAPS 0.000 0.161
PAP6 0.000 0.022
CHOL 0.313 0.280

Ingólfsson et al. 2014. Lipid Organization of the Plasma 
Membrane. JACS 136:14554; Ingólfsson et al. 2020. Capturing 
Biologically Complex Tissue-Specific Membranes at Different 
Levels of Compositional Complexity.” J Phys Chem B 124:7819.

8 lipid type plasma 
membrane model
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Figure 5: Comparison of ML-based importance sampling (bottom) with a random sampling (mid-
dle) of patches from a given “true” distribution of all patches (top). The figures show five pairs of
marginal distributions of density in the latent space with zeros of the corresponding latent dimen-
sions marked. The random sampling closely replicates the input distribution, whereas the ML-based
sampling produces a wider and flatter distribution, indicating a wider coverage of the phase space.
Both sampling approaches select about 5% of the total patches, and the corresponding figures are
color-mapped to the same range.

Figure 6: sampling. (todo: this is a placeholder. get updated figures)
14

All

Random

ML

ML+weighted

ML sampling provides a wider coverage of the phase space of 
RAS neighborhoods

Bhatia et al. 2021. Machine-learning-based dynamic-importance sampling 
for adaptive multiscale simulations. Nat. Mach. Intell. 3:401-409
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Automated workflow is the fundamental foundation of MUMMI

§ Controls and runs the macro model
§ Monitors the ML list of patches
§ Sets up, launches, and runs ~105 micro jobs
§ Carries, stores, and amalgamates analysis
§ Updates macro model

Di Natale et al. 1019. A massively parallel infrastructure for adaptive multiscale simulations: 
modeling RAS initiation pathway for cancer. Proceedings SC19, doi: 10.1145/3295500.3356197
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Automated workflow enables us to optimally utilize 
the hybrid CPU/GPU architecture 

• Fully use of all GPUs/GPUs on each node
• Typical run using half of Sierra, 2040 nodes
• Scaled to full Sierra, 4000 nodes

MACRO

IBM Power9

Nvidia 
V100

Nvidia 
V100

IBM Power9

Nvidia 
V100

Nvidia 
V100

CG Sim.

CG An.

Macro
- or -

CG Set.

Sierra, the world’s 3rd fastest supercomputer 

Di Natale et al. 1019. A massively parallel infrastructure for adaptive multiscale simulations: 
modeling RAS initiation pathway for cancer. Proceedings SC19, doi: 10.1145/3295500.3356197
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Micro simulations:
• 30 x 30 nm2

• 119,686 unique simulations
• 1+ μs each
• 206 ms aggregated
• >300M analyzed frames

Macro simulation:
• 1 μm2

• 300 KRAS
• 150 μs
• 2M patches

A simulation campaign of unprecedented size and scope
run on Sierra, the world’s 3rd fastest supercomputer 

Ingolfsson et al. Machine Learning-driven Multiscale Modeling Reveals Lipid-Dependent 
Dynamics of RAS Signaling Proteins. Out on archive, doi 10.21203/rs.3.rs-50842/v1
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Micro simulations:
• 30 x 30 nm2

• 119,686 unique simulations
• 1+ μs each
• 206 ms aggregated
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Macro simulation:
• 1 μm2

• 300 KRAS
• 150 μs
• 2M patches

A simulation campaign of unprecedented size and scope
run on Sierra, the world’s 3rd fastest supercomputer 

POPC PAPC POPE DIPE

DPSM PAPS PIP2 Cholesterol

Ingolfsson et al. Machine Learning-driven Multiscale Modeling Reveals Lipid-Dependent 
Dynamics of RAS Signaling Proteins. Out on archive, doi 10.21203/rs.3.rs-50842/v1
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Detailed analysis revealed 3rd Markov state

Pre-Campaign

2%

56%

42%

Post-Campaign

57%
22%

21%

ro
ta

tio
n 

-q
r

tilt - qt tilt - qt

ro
ta

tio
n 

-q
r

α

β ββ'

α

RAS monomer RAS aggregate

Ingolfsson et al. Machine Learning-driven Multiscale Modeling Reveals Lipid-Dependent 
Dynamics of RAS Signaling Proteins. Out on archive, doi 10.21203/rs.3.rs-50842/v1
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RAS assemblies have a preferential local membrane 
environment
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Ingolfsson et al. Machine Learning-driven Multiscale Modeling Reveals Lipid-Dependent 
Dynamics of RAS Signaling Proteins. Out on archive, doi 10.21203/rs.3.rs-50842/v1
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RAS lipid fingerprints

Ingolfsson et al. Machine Learning-driven Multiscale Modeling Reveals Lipid-Dependent 
Dynamics of RAS Signaling Proteins. Out on archive, doi 10.21203/rs.3.rs-50842/v1
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RAS lipid fingerprints

Trained convolutional 
neural network models 
on one RAS lipid density 
data

Ingolfsson et al. Machine Learning-driven Multiscale Modeling Reveals Lipid-Dependent 
Dynamics of RAS Signaling Proteins. Out on archive, doi 10.21203/rs.3.rs-50842/v1
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Three scale MuMMI, adding AA and another protein (RAF) 
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MuMMI improvements

• Support for RAF
• Third AA scale

• Backmapp CG to AA
• Run AA
• Online analysis of AA
• AA to CG feedback
• CG to AA selection

• New macro model code
• Extended and update workflow
• Updated ML macro to CG
• Updated macro to CG setup

Bhatia et al. 2021. Generalizable Coordination of Large Multiscale 
Workflows: Challenges and Learnings at Scale. Accepted SC21. 
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MuMMI operating on three length/time scales
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(a) Typical resource allocation used by M�MMI (b) Resource utilization during the initial run (c) Resource utilization during a typical restart run

Figure 6: Machine utilization. (a) The di�erent concurrently running components of the simulation campaign are split across
the machine as illustrated here to fully utilize Sierra. (b) The process loading is shown for a typical 24 h window. The number
of running CG setup jobs (24 CPU cores each) are in red and the number of Flux sub-scheduler jobs are in blue. Each sub-
scheduler job runs four CG sims jobs (ddcMD) and four CG analysis jobs, combined consuming four GPUs and 16 CPU cores.
M�MMI leverages heterogenous architecture by allocating resources as needed by di�erent tasks. (a) shows the allocation of
Sierra’s 2040 nodes for a typical run of our scienti�c campaign. A single node each is needed for the job scheduler (yellow) and
M�MMI’s work�ow manager (brown), with all remaining resources employed for simulations. (b) and (c) demonstrate that
M�MMI is capable of achieving 100% resource utilization in less than one hour. The target application does not immediately
require high utilization for the initial run, and for CPU cores for either run.

Setup. Each computational node of Sierra contains 44 3.45 GHz
POWER9® processors and four NVIDIA® TeslaTM V100 GPUs. Dur-
ing the course of this campaign, we were granted dedicated access
to 2040 nodes of Sierra for several can you be more speci�c? con-
tinuous periods of 24 hours. Therefore, the overall simulation was
performed in 24-hour chunks by restarting from the previous states.
cut preceeding sentence. We did explore remove "We did explore"
and use "Exploration of" other con�gurations, down to remove",
down to" and use "between" 15 nodes (without a running macro
model) and up to remove "up to" 4000 nodes, in which case, we
were able to successfully utilize the full machine. replace " in which
case, we were able to successfully utilize the full machine." with
"(full machine utilization)."

All results discussed in this section represent a typical 2040-
node run; we note that remove "we note that" similar trends were
observed when scaling to the full machine.

7.1 Resource Utilization
As described in Section 5.2, we used Flux in order remove "in order"
to allocate portions of a node to each di�erent type of task. Per
our design goals, we dedicated all available GPU resources to CG
simulations, the most compute-intensive component of our frame-
work, whereas the CPU cores were split into two partitions with
20 and 24 cores each. Illustrated in Figure 6a, the 20-core parti-
tion was dedicated to the CG simulations and analysis, whereas
the latter to remove "whereas the latter to" and add "reserving the
remining cores for" macro model simulations, CG setup processes,
and the WM. Speci�cally, in our typical setup with n = 2040 nodes,
one computational node was dedicated to Flux and (the 24-core
partition of) one to the WM. The single macro model simulation
occupied the 24-core partition of up to 500 nodes (d = 500).

In order to makemore e�ective use of the GPUs on each node, we
bundle four ddcMD simulations, with each utilizing one GPU and
a single CPU core (within the 20-core partition) on the remaining
n � 1 nodes with GPU. We note that each pair of cores on a Sierra
node share an L2 cache. The corresponding cache-paired CPU core

is left free to maximize the cache available to ddcMD. We were
also asked to leave at least two cores free by the administrators
for some ongoing system processes, which we counted within the
four extra ddcMD cores. The remaining 12 cores in the 20-core
partition are used for four in-situ analysis processes (one for each
ddcMD simulation). In order to reduce latency in communication
with GPUs, the 20-core partition was bound exclusively to the cores
closest to the PCIe buses.

Finally, the 24-core partitions of the n � d � 2 remaining nodes
are "were" in place of "are" reserved for short-lived, on-demand
CG setup processes. We remind the reader that the CG setup jobs
are short-lived and are processed only when needed (according
to the scienti�c needs, as guided by ML). remove preceeding sen-
tence: "We remind the reader that the CG setup jobs are short-lived
and are processed only when needed (according to the scienti�c
needs, as guided by ML)." In particular, since its goal is to prepare
CG simulations for ddcMD runs, remove preceeding text in this
sentence and start with "We maintain..." we maintain a bu�er of
simulations replace "simulations" with "CG systems" that have been
set up in anticipation of forthcoming GPU resources. We note that
the scienti�c goals speci�cally prohibit us from creating to large
of a bu�er, as that would represent a stale state of the system, and
therefore, would reduce the bene�ts of ML-based sampling. remove
preceeding sentence and use: "The size of the CG system reservoir
is intentionally limited to <=2000 con�gurations [please update
with actual number] such that newly identi�ed novel compositions
can enter the queue as they are identi�ed by ML." Therefore, the uti-
lization of this partition of CPU cores varies according to the state
of the simulation. Irrespective, these CPU cores are made available
to the simulation immediately when the requirement arises, and
are utilized upto "up to" not "upto" 100% when needed.

Figure 6 illustrates the machine utilization for two characteristic
runs. For simplicity, these �gures show only the n � d � 2 nodes
where the macro model was not running. Figure 6b shows the
initial run where the multiscale simulation was being started. In the
beginning, the simulation has not seen any patches and therefore,
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ddcMD-Martini
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§ ddcMD is an MD simulation code developed at 
Lawrence Livermore National Laboratory

§ Added support for Martini
§ Ported entire integration step to GPU
§ Is open source, but is a MD engine only and has rough edges 

outside its current use cases

Zhang et al. 2020. ddcMD: A fully GPU-accelerated molecular dynamics 
program for the Martini force field. J. Chem. Phys. 153:045103

ddcMD

GROMACS

Scaling for a water box

~140K lipid bilayer with RAS

GPU kernel profile
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A Multiscale Machine-learned Modeling Infrastructure (MUMMI)

• A large team effort - acknowledgements to the full JDACS4C Pilot 2 team and IBM

• The different components have or are being open sourced:
- ddcMD-Martini - github.com/LLNL/ddcMD
- ddcMDconverter - github.com/LLNL/ddcMDconverter
- DynIm - github.com/LLNL/dynim
- Maestro - github.com/LLNL/maestrowf
- Flux - github.com/flux-framework
- MuMMI-core and PyTarIdx in release process
- MuMMI-RAS and the Macro model in preparation


