Foldable Martini
- Details
- Last Updated: Thursday, 07 July 2022 07:42
The group of Matysiak has developed a Martini variant for foldable proteins ! Nice work: Sahoo et al. JCTC, in press.
Martini versus Charmm
- Details
- Last Updated: Monday, 27 June 2022 11:48
From the Risselada lab: a comparison between Martini 2, 3, and Charmm36 on the binding of amphipathic peptides to lipid bilayers. From the abstract: "We observed that Martini 3 qualitatively reproduces experimental trends while producing substantially lower (relative) binding free energies and shallower membrane insertion depths compared to atomistic simulations. In contrast, Martini 2 tends to overestimate (relative) binding free energies." For more details, see: van Hilten et al., JCTC 2022.
Martini perspective
- Details
- Last Updated: Monday, 27 June 2022 11:40
Not to be missed for Martini aficionados: we wrote a perspective on twenty years of Martini development, describing the history, state-of-the art, and examples of diverse application areas.
"Two decades of Martini: Better beads, broader scope"
Nuclear pore complex
- Details
- Last Updated: Wednesday, 15 June 2022 14:25
Craving for large Martini's ?
Have a look at this paper, featuring Martini simulations of the nuclear pore complex, featuring hundreds of scaffold proteins embedded in a half-toroidal double membrane !
Mosalaganti et al., Science, 2022. DOI: 10.1126/science.abm950
Current rectification hemolysin
- Details
- Last Updated: Wednesday, 08 June 2022 12:41
The group of Basdevant performed Martini simulations of the ionic transport through the α-hemolysin protein nanopore, using the polarizable water model. The electric potential difference applied experimentally was mimicked by the application of an electric field to the system. They were able to observe current asymmetry and anion selectivity, in agreement with previous studies and experiments, and identified the charged amino acids responsible for these current behaviors.
For details, see Dessaux et al., JPCB, 2022.